Reason
  • Docs
  • Try
  • API
  • Community
  • Blog
  • Languages iconEnglish
    • 日本語
    • Deutsch
    • Español
    • Français
    • 한국어
    • Português (Brasil)
    • Русский
    • Українська
    • 中文
    • 繁體中文
    • Help Translate
  • GitHub
 Up  Next

Module StdLabels.Array

module Array: ArrayLabels;

let length: array('a) => int;
Return the length (number of elements) of the given array.
let get: (array('a), int) => 'a;
ArrayLabels.get a n returns the element number n of array a. The first element has number 0. The last element has number ArrayLabels.length a - 1. You can also write a.(n) instead of ArrayLabels.get a n.

Raise Invalid_argument "index out of bounds" if n is outside the range 0 to (ArrayLabels.length a - 1).

let set: (array('a), int, 'a) => unit;
ArrayLabels.set a n x modifies array a in place, replacing element number n with x. You can also write a.(n) <- x instead of ArrayLabels.set a n x.

Raise Invalid_argument "index out of bounds" if n is outside the range 0 to ArrayLabels.length a - 1.

let make: (int, 'a) => array('a);
ArrayLabels.make n x returns a fresh array of length n, initialized with x. All the elements of this new array are initially physically equal to x (in the sense of the == predicate). Consequently, if x is mutable, it is shared among all elements of the array, and modifying x through one of the array entries will modify all other entries at the same time.

Raise Invalid_argument if n < 0 or n > Sys.max_array_length. If the value of x is a floating-point number, then the maximum size is only Sys.max_array_length / 2.

let create: (int, 'a) => array('a);
Deprecated.ArrayLabels.create is an alias for ArrayLabels.make.
let init: (int, ~f: int => 'a) => array('a);
ArrayLabels.init n f returns a fresh array of length n, with element number i initialized to the result of f i. In other terms, ArrayLabels.init n f tabulates the results of f applied to the integers 0 to n-1.

Raise Invalid_argument if n < 0 or n > Sys.max_array_length. If the return type of f is float, then the maximum size is only Sys.max_array_length / 2.

let make_matrix: (~dimx: int, ~dimy: int, 'a) => array(array('a));
ArrayLabels.make_matrix dimx dimy e returns a two-dimensional array (an array of arrays) with first dimension dimx and second dimension dimy. All the elements of this new matrix are initially physically equal to e. The element (x,y) of a matrix m is accessed with the notation m.(x).(y).

Raise Invalid_argument if dimx or dimy is negative or greater than Sys.max_array_length. If the value of e is a floating-point number, then the maximum size is only Sys.max_array_length / 2.

let create_matrix: (~dimx: int, ~dimy: int, 'a) => array(array('a));
Deprecated.ArrayLabels.create_matrix is an alias for ArrayLabels.make_matrix.
let append: (array('a), array('a)) => array('a);
ArrayLabels.append v1 v2 returns a fresh array containing the concatenation of the arrays v1 and v2.
let concat: list(array('a)) => array('a);
Same as ArrayLabels.append, but concatenates a list of arrays.
let sub: (array('a), ~pos: int, ~len: int) => array('a);
ArrayLabels.sub a start len returns a fresh array of length len, containing the elements number start to start + len - 1 of array a.

Raise Invalid_argument "Array.sub" if start and len do not designate a valid subarray of a; that is, if start < 0, or len < 0, or start + len > ArrayLabels.length a.

let copy: array('a) => array('a);
ArrayLabels.copy a returns a copy of a, that is, a fresh array containing the same elements as a.
let fill: (array('a), ~pos: int, ~len: int, 'a) => unit;
ArrayLabels.fill a ofs len x modifies the array a in place, storing x in elements number ofs to ofs + len - 1.

Raise Invalid_argument "Array.fill" if ofs and len do not designate a valid subarray of a.

let blit:
  (
    ~src: array('a),
    ~src_pos: int,
    ~dst: array('a),
    ~dst_pos: int,
    ~len: int
  ) =>
  unit;
ArrayLabels.blit v1 o1 v2 o2 len copies len elements from array v1, starting at element number o1, to array v2, starting at element number o2. It works correctly even if v1 and v2 are the same array, and the source and destination chunks overlap.

Raise Invalid_argument "Array.blit" if o1 and len do not designate a valid subarray of v1, or if o2 and len do not designate a valid subarray of v2.

let to_list: array('a) => list('a);
ArrayLabels.to_list a returns the list of all the elements of a.
let of_list: list('a) => array('a);
ArrayLabels.of_list l returns a fresh array containing the elements of l.
let iter: (~f: 'a => unit, array('a)) => unit;
ArrayLabels.iter f a applies function f in turn to all the elements of a. It is equivalent to f a.(0); f a.(1); ...; f a.(ArrayLabels.length a - 1); ().
let map: (~f: 'a => 'b, array('a)) => array('b);
ArrayLabels.map f a applies function f to all the elements of a, and builds an array with the results returned by f: [| f a.(0); f a.(1); ...; f a.(ArrayLabels.length a - 1) |].
let iteri: (~f: (int, 'a) => unit, array('a)) => unit;
Same as ArrayLabels.iter, but the function is applied to the index of the element as first argument, and the element itself as second argument.
let mapi: (~f: (int, 'a) => 'b, array('a)) => array('b);
Same as ArrayLabels.map, but the function is applied to the index of the element as first argument, and the element itself as second argument.
let fold_left: (~f: ('a, 'b) => 'a, ~init: 'a, array('b)) => 'a;
ArrayLabels.fold_left f x a computes f (... (f (f x a.(0)) a.(1)) ...) a.(n-1), where n is the length of the array a.
let fold_right: (~f: ('b, 'a) => 'a, array('b), ~init: 'a) => 'a;
ArrayLabels.fold_right f a x computes f a.(0) (f a.(1) ( ... (f a.(n-1) x) ...)), where n is the length of the array a.

Sorting

let sort: (~cmp: ('a, 'a) => int, array('a)) => unit;
Sort an array in increasing order according to a comparison function. The comparison function must return 0 if its arguments compare as equal, a positive integer if the first is greater, and a negative integer if the first is smaller (see below for a complete specification). For example, Pervasives.compare is a suitable comparison function, provided there are no floating-point NaN values in the data. After calling ArrayLabels.sort, the array is sorted in place in increasing order. ArrayLabels.sort is guaranteed to run in constant heap space and (at most) logarithmic stack space.

The current implementation uses Heap Sort. It runs in constant stack space.

Specification of the comparison function: Let a be the array and cmp the comparison function. The following must be true for all x, y, z in a :

  • cmp x y > 0 if and only if cmp y x < 0
  • if cmp x y >= 0 and cmp y z >= 0 then cmp x z >= 0
When ArrayLabels.sort returns, a contains the same elements as before, reordered in such a way that for all i and j valid indices of a :
  • cmp a.(i) a.(j) >= 0 if and only if i >= j

let stable_sort: (~cmp: ('a, 'a) => int, array('a)) => unit;
Same as ArrayLabels.sort, but the sorting algorithm is stable (i.e. elements that compare equal are kept in their original order) and not guaranteed to run in constant heap space.

The current implementation uses Merge Sort. It uses n/2 words of heap space, where n is the length of the array. It is usually faster than the current implementation of ArrayLabels.sort.

let fast_sort: (~cmp: ('a, 'a) => int, array('a)) => unit;
Same as ArrayLabels.sort or ArrayLabels.stable_sort, whichever is faster on typical input.

Undocumented functions

let unsafe_get: (array('a), int) => 'a;
let unsafe_set: (array('a), int, 'a) => unit;